
 

 

 
 
19 October 2021 
 
 
Ecological value of lands in the Grand Mesa, Uncompahgre and Gunnison 
National Forests 
 
 
 
Submitted to: 
The Pew Charitable Trusts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recommended citation: Conservation Science Partners. 2021. Ecological value of lands in the Grand Mesa, 
Uncompahgre and Gunnison National Forests. Final Report. Truckee, CA.



 

Conservation Science Partners   
 2 | Page 
 

1. INTRODUCTION 

Identifying areas of high ecological value is critical to prioritizing new conservation efforts, but 
remains a considerable challenge given multiple land use objectives, the variety of ecological 
and environmental benefits that any given landscape might provide (e.g., carbon storage, 
wildlife habitat, ecological connectivity), and potential trade-offs between these benefits. In an 
effort to support the US Forest Service’s (USFS) ongoing revisions of its Land and Resource 
Management Plans (commonly called ‘forest plans’), we have calculated the relative ecological 
value of lands in Grand Mesa, Uncompahgre and Gunnison National Forests based on a 
collection of key spatial data sets. We define ‘ecological value’ as the potential for a given 
location on the landscape (i.e., a pixel in a gridded landscape raster) to contribute to crucial 
ecological processes such as supporting biodiversity and connectivity and buffering organisms 
against the impacts of climate change through carbon storage and accessibility of favorable 
climate conditions. This concept is related to that of ‘conservation value,’ as used by Dickson et 
al. (2014), but does not directly incorporate social/political aspects of conservation such as the 
proportion of an ecosystem type currently protected. 

Here we describe our work integrating multiple key ecological and environmental variables 
(hereafter, “indicators”) into a composite index that provides a single coherent measure of 
ecological value for each location across the national forest (excluding national grasslands at 
the Ranger District level where appropriate). We applied an innovative approach to address 
correlations between ecological indicators and ensure that index values are as interpretable as 
possible. Our analysis considers all lands within the administrative boundary of the national 
forest, regardless of ownership (e.g., federal, state, private). Because many of the ecological 
processes that our indicator variables estimate (e.g., ecological connectivity and the ability for 
species to move in response to climate change) are influenced by the surrounding landscape, 
non-NFS lands interspersed within national forest boundaries will affect the overall ecological 
value of lands within the forest. For instance, modified private lands within a national forest 
boundary may impact the capacity of the broader landscape to support the movement of 
organisms. We therefore chose to include all ownership types within national forest boundaries 
when estimating the average value of indicator variables and the composite index. This report 
focuses on currently unprotected lands within the Grand Mesa, Uncompahgre and Gunnison 
National Forests and identifies areas in the top 10% of ecological value. 

 

2. INDICATORS 

The set of ecological and environmental indicators used in this analysis was selected based on 
previous work by Conservation Science Partners (Dickson et al. 2014) and was co-developed 
with staff at The Pew Charitable Trusts to best capture the range of ecological values 
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represented within lands managed by the US Forest Service. We chose a contemporary, 
parsimonious set of indicators that represent key conservation priorities related to biodiversity 
and climate mitigation. We endeavored to keep our indicator set sufficiently concise to ensure 
that it is clear to users what information is being integrated into each index and to maximize 
interpretability of resulting index values. We also ensured indicators were based on the best 
quality spatial data (i.e., maps or ‘layers’) available and derived at a relatively high spatial 
resolution. The selected indicators are described below. 

Total carbon estimates the total ecosystem carbon (above and below ground biomass, soil 
organic carbon) that currently exists in a given location in units of metric tons of carbon per 
hectare. This 300-meter resolution dataset represents the best available information on current 
carbon storage (circa 2010) across the US (Spawn et al. 2020, Noon et al. in press). Total carbon 
was determined based on ecosystem type, using the average carbon content per hectare for 
each of 13 terrestrial biomes and three coastal biomes (Goldstein et al. 2020). Ecosystem-
specific values of average above ground biomass carbon per hectare were derived from 
applicable databases (e.g., ForC database of forest carbon stocks [Anderson-Teixeira et al. 
2018] and global grassland carbon database [Xia et al. 2014]), while below ground biomass 
carbon was estimated for each ecosystem type based on below ground to above ground 
(root:shoot) biomass ratios (Mokany et al. 2006) for the dominant vegetation type in that 
system. Soil organic carbon stocks were estimated using the SoilGrids database (Hengl et al. 
2017). Note: Recent research indicates that changes in albedo (i.e., amount of solar radiation 
reflected by snow or light-colored bare ground) may reduce the effective carbon benefits of 
forest cover in parts of the western U.S., including the Rocky Mountains region - forest loss in 
this region will lead to climate warming due to carbon release, but this may be offset by 
increased cooling through greater solar reflectance in cleared areas (Mykleby et al. 2017, 
Williams et al. 2021). 

Climate resilience estimates the degree to which the climate conditions currently experienced 
by a species will be accessible in the future. Areas of high climate resilience are those that 
contribute to the ability of species to adapt to climate change through both local and long-
distance movements. Climate resilience is derived as the multiplicative inverse of climate 
velocity, a measure of the instantaneous velocity of climate change at a location on the 
landscape (Carroll et al. 2015). The climate velocity metric used here was originally developed 
by Hamann et al. (2015) and expanded by the AdaptWest Project (2015) by integrating 11 
climate variables via principal component analysis (PCA) and calculating velocity based on the 
distance between sites with matching present climate (averaged from 1981 to 2010) and future 
climate (2055, based on RCP8.5 emissions scenario). The 1-km resolution climate variables in 
the PCA include (see Hamann et al. 2015 for further details on climate variables):  

1. Mean annual temperature  
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2. Mean temperature of the warmest month (MTW) 
3. Mean temperature of the coldest month (MTC) 
4. Difference between MTC and MTW 
5. Mean annual precipitation 
6. Mean summer (May to September) precipitation 
7. Mean winter (October to April) precipitation  
8. Degree-days above 5°C 
9. Number of frost-free days 
10. Hargreave's reference evaporation 
11. Hargreave's climatic moisture index 

The Hamann et al. (2015) algorithm can be implemented in either forward (find future climate 
locations matching the focal location’s current climate) or backward (find current climate 
locations matching the focal location’s future climate) directions. We derived our estimate of 
climate resilience based on backward velocity, which asks: given the projected future climate 
habitat of a focal location, what is the minimum distance an organism has to migrate to 
colonize this climate habitat?  

Imperiled species richness estimates the number of species of conservation concern likely to 
occur in a given area. This layer, developed by NatureServe, integrates habitat suitability maps 
for 2,216 of the nation’s most imperiled species, including “vertebrates (birds, mammals, 
amphibians, reptiles, freshwater fishes; 309 species), freshwater invertebrates (228 species), 
pollinators (43 species), and vascular plants (1,636 species)” (NatureServe 2020). This 990-m 
resolution layer includes species designated by NatureServe as imperiled or critically imperiled, 
and species listed as threatened or endangered under the Endangered Species Act.  

Vertebrate species richness estimates the number of terrestrial, non-volant species likely to 
occur in a given area. Following Soto-Navarro et al. (Soto-Navarro et al. 2020), we calculated 
species richness by overlaying IUCN range maps for amphibians, reptiles, and mammals and 
restricted these ranges based on recently published maps of IUCN habitat (Jung et al. 2020). 
Richness maps were produced at 2km resolution, as recommended for IUCN range data. (KBA 
2019) 

Ecological intactness estimates the degree to which a given location remains in a natural state. 
Ecologically intact landscapes are those with minimal or no influence from human activities and 
which are therefore able to support natural evolutionary and ecological processes (Angermeier 
and Karr 1996, Parrish et al. 2003) as well as communities of organisms similar in species 
composition, diversity, and functional organization to those of undisturbed habitats (Parrish et 
al. 2003). Ecological intactness is calculated as 1 - L, where L is the intensity of human land use 
(Theobald 2013). Drawing on our previous work (CSP 2019), we derived estimates of 
anthropogenic impact (circa 2017), quantifying the intensity and footprint of human land use 
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based on multiple types of human activities, including residential and commercial development, 
agriculture, energy production and mining, transportation, and harvest of forest products (CSP 
2019). Ecological intactness was derived for the conterminous US at 90-m resolution. 

Ecological connectivity estimates the ability of a given location to support the natural 
movement of organisms through processes such as dispersal, migration, and gene flow and to 
provide linkages between areas of high quality habitat (Dickson et al. 2017). Maintaining areas 
of high ecological connectivity is also considered a key strategy for supporting species 
migrations and range shifts under climate change (Heller and Zavaleta 2009). We used the 
procedure described by Dickson et al. (2017) to derive resistance surfaces for connectivity 
models by rescaling our anthropogenic impact layer (described above under ecological 
intactness) and incorporating a realistic penalty for steep slopes, which may present barriers to 
movement for many organisms. We used a mammal species richness layer to estimate source 
strength (the likelihood that a given location will act as starting/end point for animal 
movement), treating source strength as proportional to the number of mammal species 
estimated to occur in a given location. As above, we estimated mammal richness by overlaying 
IUCN range maps for mammals (408 species) and restricting these ranges based on recently 
published maps of IUCN habitat (Jung et al. 2020). Richness maps were produced at 2-km 
resolution, as recommended for IUCN range data. We used a circuit theory-based approach 
(McRae et al. 2008, Dickson et al. 2019) to model the flow of organisms across conterminous 
US, using Omniscape software to implement an omni-directional connectivity model at 1-km 
resolution (McRae et al. 2016, Landau et al. 2021). 

Vegetation diversity describes the diversity of plant communities, defined here as groups of 
“plant community types (associations) that tend to co-occur within landscapes with similar 
ecological process, substrates, and/or environmental gradients” (Comer et al. 2003). Such plant 
communities provide a variety of habitats essential for maintaining broader species diversity 
(Noss 1990). Vegetation diversity may stem from the presence of strong elevation gradients, 
ecotonal transitions among biome types, and/or interspersion of unique water-associated 
communities, such as wetlands, marshlands, meadows, and riparian zones. We used data on 
vegetation type from the 30-m resolution USGS Gap Ecological Systems data layer (USGS 2011) 
as the basis for calculating vegetation diversity and assigned null values to all developed and 
invasive species land cover types prior to running the analysis such that these lands would not 
contribute toward the diversity calculation. Following Theobald et al. (2015) we estimated 
vegetation diversity using the Shannon-Weaver equitability index (a normalized version of the 
Shannon-Weaver diversity index; Theobald et al. 2015) based on the proportion of pixels within 
a given neighborhood that were classified as a particular vegetation type. We estimated 
vegetation diversity across multiple spatial scales using moving window neighborhood sizes 
that ranged between a radius of 1.2 and 115.8 km, corresponding to the average area of USGS 
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hydrologic units (Hydrologic Unit Codes 4-16; Theobald et al. 2015). The final diversity value 
was derived by taking the average across all spatial scales. Values have a theoretical range of 
zero to one with higher value denoting places of greater vegetation diversity. 

 

3. THE COMPOSITE INDEX 

The indicator variables described above were integrated into a composite index, providing a 
single estimate of ecological value for each location (i.e., pixel) within the national forest. As 
described in further detail below, we developed our composite index using indicator values 
from all lands within national forest boundaries across the conterminous US (CONUS) and then 
use this composite index of ecological value to identify unprotected areas of highest ecological 
value within the Grand Mesa, Uncompahgre and Gunnison National Forests. Note that some 
USFS administrative units also contain national grasslands, which may have indicator values 
that differ substantially from those of national forests in the same unit. These national 
grasslands were excluded from our analysis at the Ranger District level.  

Composite indices are mathematical combinations of (in this case) ecological and 
environmental variables that otherwise have no common meaningful unit of measurement 
(Burgass et al. 2017). There are several key decisions related to how indicator values are 
mathematically combined in a composite index – including whether and how indicators are 
transformed, aggregated, and weighted – that will affect the ultimate interpretation of index 
values and resulting planning and prioritization decisions (Burgass et al. 2017, Greco et al. 
2019). Here we describe our efforts to develop a transparent and well-justified approach to 
deriving the composite index, paying special attention to the issue of indicator weights, a 
complicated problem given the often considerable difference between an indicator’s weight 
and it’s actual influence on the resulting index value (Becker et al. 2017). 

The first major decision we addressed was whether and how to transform indicator variables. 
Some investigators choose to nominally “normalize” highly skewed variables by applying certain 
transformations. However, such transformations, by definition, change the values of an 
indicator and its behavior and influence in a composite index. Lacking strong justification for 
any particular transformation, we choose not to alter the distributions of any of the indicators.  

The next decision concerned the mathematical function used to place all indicators on a 
common scale. This step is necessary because the indicators we used have non-comparable 
units (e.g., tonnes of carbon per hectare, number of vertebrate species). To ensure 
comparability across indicators, each indicator was standardized (converted to z-scores) by  

!!" =
#!"	%	&'()(#")

,-(#")
,                                                             (eq. 1) 
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where xij is the vector of i = 1, 2, …, N, observations of indicator j and zij are the z-transformed 
values. Converting to z-scores has the effect of centering the distribution of each indicator on 
zero and converting the unit of measurement for all indicators to standard deviations, allowing 
direct comparison between indicators with very different native units. We performed indicator 
standardization based on the mean and standard deviation of indicator values across all pixels 
within the boundaries of all administrative units in the conterminous US. Each standardized 
indicator had a mean of zero, corresponding to the average value of that indicator across the 
entire extent of this analysis, and ranged between approximately -4 and 4 (with the exact range 
differing somewhat between indicators). 

Finally, we calculated the value of the composite index, y, at each location, i, across all national 
forests as the weighted linear combination of indicator variables. We used a weighted mean of 
indicators (Paruolo et al. 2013, Becker et al. 2017) such that 

!! = ∑ $!"%"#
"	%	1 ,                                                           (eq. 2) 

where wj is the weight applied to indicator j, with weights summing to 1 across all indicators. It 
is tempting to assume that the weights represent the relative importance of each indicator in 
determining the overall composite index, but this is not always the case (Paruolo et al. 2013, 
Becker et al. 2017). When indicators are correlated, as environmental variables and metrics 
often are, weights are often not directly equivalent to representative, or even intuitively 
predictive of, indicator ‘importance,’ which we define as the degree to which a single indicator 
can explain observed variation in the composite index (see Appendix A for a mathematical 
definition of importance). Note that similar problems can also occur when indicators do not 
have equal variance, however, this is not relevant in our analysis because, as described above, 
all indicators were standardized by converting to z-scores. Given the complex relationship 
between weights and influence, the naive application of weights can lead to non-intuitive 
composite index values for which particular indicators are more or less influential than 
expected. Therefore, rather than simply basing our analysis on equal weighting of each 
indicator, as is frequently done in analyses aggregating multiple ecological datasets, we instead 
adapted a method proposed by Becker et al. (2017) to determine the set of weights needed to 
achieve equal importance across all indicator variables. This approach, which involves using an 
optimization algorithm to find the set of weights that yields a predetermined importance value 
for each indicator, is described in detail in Appendix A. Our optimized weights approach thus 
allows for readily interpretable composite index scores in which all indicator variables are 
essentially placed on equal footing in determining the value of the index at any given location. 
It is worth noting that other weighting schemes are also valid (e.g., some indicators could be 
made twice as important as others) and that our choice of weights providing equal importance 
is a subjective one. However, in the absence of a priori assumptions regarding differential 
importance between indicators, we have chosen to equalize importance across indicators. We 
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calculated the composite index in Google Earth Engine (GEE) at 90-m resolution. Prior to 
analysis, all indicator variables were resampled to 90-m resolution using GEE’s default nearest-
neighbor algorithm. 

 

4. IDENTIFYING AREAS OF HIGHEST ECOLOGICAL VALUE 

As noted above, the composite index of ecological value was calculated across all national 
forests in the coterminous United States. To identify the highest relative value areas within the 
Grand Mesa, Uncompahgre and Gunnison National Forests, we first clipped the pixel-level 
composite index results to just this forest and used a circular kernel to calculate the focal mean 
within a 5,000-acre area around each pixel. This smoothing process retained the original data 
resolution but ensured that any pixels identified as high ecological value (i.e., high values of the 
composite index) actually represent high value areas within the broader region. We chose an 
area of 5,000 acres to correspond with size requirements contained in multiple US public lands 
statutes and associated agency regulations and guidance (e.g., Forest Service Land 
Management Planning Handbook 1909.12, Wilderness Act of 1964). We identified existing 
protected areas within the National Forest (i.e., lands categorized as GAP 1 or 2 protection 
status in the USGS Protected Areas Database of the U.S., version 2.1) and excluded these from 
the smoothed composite index surface. We then identified all remaining pixels falling within 
the top 10% of smoothed composite index values across all unprotected areas of the national 
forest and drew polygons around contiguous groups of pixels within this top 10% category. The 
resulting polygons represent High Ecological Value Areas (HEVAs) that can serve as targets for 
additional conservation-focused management. HEVAs are similar to Conservation Priority Areas, 
as defined by Dixon et al. (2014), but focus specifically on ecological value rather than 
incorporating social/political aspects of conservation. Note that, while the HEVAs are based on 
the composite index layer that has been smoothed to 5,000 acres, the polygons themselves can 
be of any size, depending on the number of contiguous high value pixels in the smoothed index 
layer. To remove potential artifacts and polygons that are too small to be of relevance to 
management, we filtered the set of HEVA polygons to only those with an area greater than 100 
acres. This 100-acre cut-off, while arbitrary, will help to focus our results on larger areas that 
may be better suited for conservation-oriented management.  

For each HEVA, we calculated the average (± standard deviation) value of each indicator and 
the composite index across all pixels falling within the HEVA polygon. As noted above, this 
analysis (including the delineation of HEVAs) was performed using all lands within National 
Forest administrative boundaries, regardless of ownership type. We therefore also calculated 
the proportion of each HEVA comprised of National Forest System (NFS) lands (i.e., those 
owned by USFS). NFS lands were identified using the Surface Ownership Parcels dataset 
available at http://data.fs.usda.gov/geodata/edw/datasets.php.  
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Finally, to aid in the comparison of relative ecological value between different HEVAs, we 
developed an estimate of relative road impacts within each HEVA. We started by compiling a 
comprehensive dataset of all roads and all trails on which motor vehicle use is allowed. We 
used the U.S. Census Bureau’s TIGER roads dataset (U.S. Census Bureau, 2019), which 
represents all major roads and local routes, and the USFS Motor Vehicle Use Map (MVUM) 
roads and trails datasets (available at https://data.fs.usda.gov/geodata/edw/datasets.php ), 
which represent roads and trails managed by USFS. It is important to note that the ecological 
impacts of a road occur beyond the physical road itself, influencing factors such as vegetation 
structure and wildlife movement in a zone extending out from the road edge (Forman and 
Alexander 1998, Shanley and Pyare 2011). The actual size of this road effect zone varies 
substantially depending on the species or ecological process being considered and features of 
the road itself (e.g., traffic volume) but may in some cases be >100m (Forman 2000). For this 
analysis, we rasterized all roads at 30-m resolution, thus considering the road effect zone to be 
30-m wide, a conservative value that corresponds to the actual footprint of some larger roads 
(Theobald 2010, 2013) and is well within the size range of road effect zones estimated by 
previous studies (Forman 2000, Shanley and Pyare 2011). We then calculated an estimate of 
relative road impacts for each HEVA as the total area of all 30-m wide roads within a given 
HEVA divided by total HEVA area. Importantly, our road impacts metric is not an estimate of 
road density (i.e., length of road per unit area) but rather a relative estimate of how impacted a 
given HEVA is by the ecological effects of roads, which is comparable across HEVAs. It is also 
worth noting that there is some overlap between the TIGER and MVUM roads datasets such 
that some routes are represented by line features in both datasets. Treating all roads as being 
30-m wide, as done here, mitigates the effects of double counting routes represented in both 
datasets, which would occur if our estimates were instead based on road length. 

 

5. RESULTS AND CONSIDERATIONS 

Figure 1 shows the smoothed composite index mapped across the Grand Mesa, Uncompahgre 
and Gunnison National Forests, highlighting the locations of each HEVA. We identified 52 
HEVAs, with an average size (± standard deviation) of 4,656 (± 6,221) acres. Numerical IDs for 
each HEVA are given in Figure 2 and correspond to IDs in Table 1, which provides average 
values of all indicators, as well as the composite index, for each HEVA. Indicator means and 
standard deviations in Table 1 are presented as standardized values (i.e., z-scores, see Section 3 
above) to facilitate direct comparison of values between indicators and across HEVAs. Indicator 
values in their original units (e.g., metric tons of carbon per hectare for total carbon) are 
presented in Appendix B. Appendix C contains several additional maps, including the 
unsmoothed composite index layer (Fig. C1), satellite imagery (Fig. C2), and roads and trails (Fig. 
C3), providing further context for our model results.  
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It is important to note that our determinations of areas of high ecological value within the 
Grand Mesa, Uncompahgre, and Gunnison National Forests are relative in the sense that, if an 
area within the forest is not identified as a HEVA (i.e., does not have composite index values 
within the top 10%) this does not imply that the area has low importance for ecology and 
conservation. Rather, it means that the combination of all indicator values considered here is 
relatively low in that area as compared to other areas within the forest. It is also worth 
reiterating that, as with all model-based indices, the results of our composite index of 
ecological value will depend on the exact indicators used and the relative importance values 
they are assigned. We have endeavored to (1) use a comprehensive set of literature-supported 
indicators that reflect a broad range of ecological values, and (2) ensure that all indicators have 
equal influence in determining the value of the resulting index. However, we note that the use 
of other or additional indicators, or the selection of weights that emphasize the importance of 
certain indicators over others, would likely lead to somewhat different results. Finally, we note 
that, while we have confidence in the underlying datasets used to identify HEVAs, these areas 
have not been subjected to ground-truthing to verify their ecological value. 

Given these considerations, we expect that the delineation of HEVAs in this report will be useful 
in identifying potential areas for conservation-focused management within the Grand Mesa, 
Uncompahgre, and Gunnison National Forests. HEVAs can serve as a starting point for 
understanding which unprotected areas on the forest are likely to be the most important for 
ensuring its long-term ecological sustainability. By considering HEVAs, the Forest Service, in 
collaboration with stakeholders, can design management plans that ensure the continued 
presence of the ecological values represented by our indicator variables during the agency’s 
forest plan revision process. Because HEVAs consider only ecological aspects, it is important 
that the Forest Service and stakeholders include additional social and economic sustainability 
considerations when determining the appropriateness of a given HEVA for increased 
conservation or any other management emphasis. These social and economic considerations 
are best applied during the forest plan revision process through stakeholder input received by 
the Forest Service. This research provides a useful starting point for those discussions.  
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Figure 1. Map of Grand Mesa, Uncompahgre and Gunnison National Forests showing the smoothed composite 
index of ecological value. See the reference map (Fig. 2) for HEVA labels, corresponding to rows in Table 1. 
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Figure 2. Reference map showing the ID for each HEVA in Fig. 1, with ID numbers increasing from north to south. 
IDs correspond to those in Table 1. 
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Table 1. Summary statistics for all high ecological value areas (HEVAs). HEVA IDs correspond to the numeric labels in the reference map (Fig. 2). Values for ecological 
and environmental indicators and the composite index are given as means (standard deviations) for all pixels within the HEVA. Indicator means are shown as 
standardized (i.e., z-transformed) values, as described in Section 3 above. Standardized indicator values are comparable across indicators and HEVAs. 

ID Area 
% NFS 

lands 

Road 

impact 

Climate 

resilience 
Connectivity 

Imperiled 

richness 
Intactness Total carbon 

Vegetation 

diversity 

Vertebrate 

richness 

Composite 

Index 

1 4518 100 0.02 0.4 (0.11) 1.59 (1.01) -0.43 (0.21) 0.48 (0.66) -0.02 (0.58) 1.03 (0.1) 0.2 (0.08) 0.29 (0.15) 

2 7699 100 0.02 0.29 (0.14) 1.31 (0.29) -0.61 (0.2) 0.63 (0.13) 0.27 (0.58) 1.07 (0.19) 0.18 (0.09) 0.33 (0.14) 

3 1640 100 0 0.45 (0.06) 0.7 (0.34) -0.43 (0.21) 0.07 (0.47) 0.94 (0.49) 0.2 (0.1) 0.16 (0.07) 0.26 (0.14) 

4 25796 98 0.01 0.5 (0.08) 1.36 (0.54) -0.45 (0.23) 0.49 (0.35) 0.33 (0.43) 0.65 (0.18) 0.23 (0.05) 0.29 (0.1) 

5 5311 96 0.03 0.25 (0.12) 1.57 (0.56) -0.39 (0.34) 0.05 (0.61) 0.17 (0.3) 0.94 (0.11) 0.46 (0.01) 0.28 (0.11) 

6 217 100 0 0.2 (0.02) 2.38 (0.41) -0.73 (0) 0.63 (0.04) -0.21 (0.16) 0.87 (0.07) 0.46 (0) 0.19 (0.04) 

7 25865 100 0.01 0.31 (0.13) 2.1 (1.3) -0.29 (0.33) 0.29 (0.64) -0.14 (0.43) 0.99 (0.19) 0.7 (0.08) 0.32 (0.13) 

8 661 100 0 0.18 (0.05) 3.58 (0.56) -0.34 (0.19) 0.61 (0.05) -0.15 (0.18) 0.4 (0.05) 0.58 (0) 0.19 (0.06) 

9 1866 87 0.05 0.55 (0.04) 0.29 (0.34) -0.19 (0.37) 0.61 (0.15) -0.37 (0.34) 1.74 (0.07) -0.78 (0.03) 0.3 (0.09) 

10 112 100 0 0.01 (0) 0.36 (0.2) -0.63 (0.18) 0.75 (0) 0.57 (0.32) 1.36 (0.02) -0.61 (0.02) 0.31 (0.06) 

11 13391 97 0.03 0.56 (0.02) 0.13 (0.23) 0.41 (0.57) 0.72 (0.08) -0.74 (0.37) 1.45 (0.13) -0.85 (0.04) 0.27 (0.11) 

12 146 96 0 0.57 (0) -0.16 (0.15) -0.06 (0.39) 0.75 (0) -1.07 (0.05) 1.75 (0.02) -0.67 (0) 0.21 (0.07) 

13 154 100 0 0.57 (0) -0.16 (0.06) -0.28 (0) 0.7 (0.02) -0.82 (0.09) 1.84 (0.02) -0.85 (0) 0.22 (0.02) 

14 3879 91 0.02 0.54 (0.13) 0.19 (0.29) -0.3 (0.34) 0.7 (0.07) -0.23 (0.48) 1.66 (0.08) -0.76 (0.05) 0.31 (0.11) 

15 358 100 0 0.56 (0) -0.12 (0.09) -0.73 (0) 0.74 (0.01) -0.17 (0.38) 1.58 (0.05) -0.9 (0.04) 0.21 (0.07) 

16 1994 100 0.01 -0.19 (0.08) 1.05 (0.31) -0.09 (0.22) 0.65 (0.13) 0.82 (0.34) 0.61 (0.19) -0.61 (0.03) 0.26 (0.08) 

17 4104 100 0.03 0.4 (0.1) 1.51 (0.84) -0.48 (0.25) 0.41 (0.39) -0.42 (0.44) 1.09 (0.21) 0.74 (0.03) 0.28 (0.12) 

18 4636 84 0.02 0.02 (0.07) 0.57 (0.54) -0.28 (0.26) 0.52 (0.28) 0.2 (0.43) 1.28 (0.15) -0.47 (0.06) 0.27 (0.11) 

19 7644 98 0.03 0.54 (0.01) 0.09 (0.26) -0.32 (0.2) 0.67 (0.13) -0.12 (0.36) 1.46 (0.1) -0.76 (0.03) 0.28 (0.08) 

20 678 33 0.02 0.55 (0.01) 0.48 (0.21) -0.55 (0.25) 0.5 (0.16) 0.03 (0.38) 1.6 (0.04) -0.81 (0.03) 0.27 (0.09) 

21 2050 94 0.02 0.56 (0.01) 0.98 (0.43) -0.5 (0.23) 0.73 (0.06) 0.17 (0.33) 1.26 (0.13) -0.82 (0.03) 0.27 (0.08) 

22 488 100 0.02 0.52 (0.01) -0.09 (0.08) -0.59 (0.42) 0.62 (0.12) -0.35 (0.5) 1.7 (0.02) -0.79 (0) 0.22 (0.14) 

23 7128 100 0 0.22 (0.24) 0.28 (0.37) -0.51 (0.48) 0.64 (0.3) -0.13 (0.44) 1.48 (0.18) -0.1 (0.18) 0.3 (0.1) 

24 5068 75 0.02 0.58 (0.02) 0.71 (0.36) -0.28 (0.24) 0.63 (0.14) 0.08 (0.33) 1.32 (0.11) -0.76 (0.06) 0.3 (0.08) 

25 272 54 0.03 0.49 (0.01) -0.05 (0.25) -0.06 (0.59) 0.23 (0.24) -0.39 (0.42) 1.52 (0.11) -0.79 (0) 0.21 (0.19) 
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26 22748 92 0.02 0.47 (0.03) 0.18 (0.33) -0.02 (0.47) 0.67 (0.17) -0.47 (0.4) 1.69 (0.13) -0.76 (0.03) 0.3 (0.11) 

27 1471 99 0 0.52 (0.01) -0.23 (0.15) 0.89 (0.5) 0.73 (0.02) -0.87 (0.19) 1.47 (0.07) -0.85 (0.04) 0.33 (0.1) 

28 418 96 0.05 0.38 (0.01) -0.26 (0.06) 0.17 (0) 0.71 (0.08) -0.47 (0.28) 1.7 (0.03) -0.84 (0.03) 0.32 (0.06) 

29 916 81 0.03 0.36 (0.01) -0.19 (0.07) 0.09 (0.27) 0.43 (0.21) -0.65 (0.39) 1.72 (0.03) -0.79 (0.01) 0.24 (0.1) 

30 370 82 0 0.47 (0.01) -0.28 (0.08) 0.4 (0.53) 0.69 (0.03) -0.97 (0.11) 1.58 (0.05) -0.63 (0.03) 0.26 (0.11) 

31 13509 100 0.01 0.57 (0.01) 0.5 (0.47) -0.58 (0.21) 0.67 (0.12) -0.18 (0.43) 1.63 (0.08) -0.5 (0.06) 0.3 (0.1) 

32 3015 100 0.01 0.53 (0.01) -0.25 (0.14) -0.31 (0.38) 0.71 (0.07) -0.17 (0.47) 1.48 (0.05) -0.77 (0.03) 0.28 (0.12) 

33 346 50 0 0.57 (0) 1.81 (0.46) -0.31 (0.11) 0.67 (0.02) -0.13 (0.48) 1.01 (0.12) -0.2 (0.07) 0.27 (0.11) 

34 1367 92 0.03 0.4 (0.02) 0.32 (0.21) 0.65 (0.29) 0.75 (0.03) -0.93 (0.38) 1.46 (0.18) -0.73 (0.01) 0.28 (0.11) 

35 13848 92 0.03 0.39 (0.02) 0.29 (0.23) -0.21 (0.28) 0.68 (0.12) -0.43 (0.37) 1.67 (0.17) -0.37 (0.07) 0.31 (0.09) 

36 254 100 0 0.54 (0.01) 0.27 (0.08) -0.28 (0) 0.65 (0.05) -0.46 (0.37) 1.8 (0.03) -0.91 (0) 0.26 (0.08) 

37 2877 94 0.04 0.33 (0.05) 0.33 (0.3) -0.64 (0.18) 0.71 (0.09) 0.01 (0.27) 1.53 (0.15) -0.57 (0.04) 0.27 (0.07) 

38 433 100 0 0.53 (0) 0.01 (0.11) -0.28 (0) 0.63 (0.04) -0.69 (0.35) 1.9 (0.02) -0.86 (0.02) 0.24 (0.07) 

39 7289 89 0.01 0.39 (0.04) 1.3 (0.39) -0.4 (0.37) 0.67 (0.12) 0.12 (0.36) 1.42 (0.15) -0.59 (0.11) 0.32 (0.1) 

40 2867 99 0.01 0.46 (0.02) 0.14 (0.21) -0.12 (0.67) 0.7 (0.06) -0.28 (0.52) 1.31 (0.1) -0.73 (0.03) 0.25 (0.11) 

41 11499 89 0.02 0.4 (0.07) 0.22 (0.26) -0.21 (0.56) 0.59 (0.3) -0.27 (0.44) 1.56 (0.25) -0.62 (0.05) 0.28 (0.11) 

42 7032 61 0.01 0.47 (0.03) 0.13 (0.35) -0.47 (0.31) 0.65 (0.14) -0.11 (0.48) 1.5 (0.26) -0.21 (0.05) 0.33 (0.13) 

43 1332 66 0.02 0.35 (0.06) 0.18 (0.2) -0.55 (0.22) 0.69 (0.07) 0.12 (0.38) 1.69 (0.05) -0.6 (0.03) 0.34 (0.08) 

44 4519 80 0.03 0.42 (0.11) 0.17 (0.19) 1.07 (0.67) 0.67 (0.1) -0.63 (0.3) 1.1 (0.18) -0.63 (0.05) 0.34 (0.11) 

45 288 93 0 0.52 (0) 0.33 (0.14) 0.95 (0.42) 0.63 (0.08) -0.73 (0.08) 1.12 (0.08) -0.64 (0.03) 0.31 (0.08) 

46 6790 61 0.01 0.44 (0.06) 0.62 (0.3) -0.59 (0.21) 0.67 (0.15) 0.18 (0.43) 0.95 (0.11) -0.03 (0.05) 0.28 (0.11) 

47 2787 99 0 0.51 (0.01) -0.1 (0.2) -0.1 (0.43) 0.75 (0.02) -0.2 (0.47) 1.34 (0.07) -0.77 (0.03) 0.28 (0.1) 

48 100 59 0.06 0.47 (0.05) 0.37 (0.2) 1.06 (0.3) 0.24 (0.15) -0.78 (0.36) 1.34 (0.02) -0.6 (0.02) 0.32 (0.08) 

49 2303 72 0.04 0.46 (0.01) 0.82 (0.3) -0.37 (0.33) 0.55 (0.2) 0.32 (0.36) 1.04 (0.08) -0.26 (0) 0.32 (0.11) 

50 132 100 0.07 0.45 (0) 0.61 (0.06) -0.73 (0) 0.68 (0.02) -0.12 (0.3) 1.15 (0.04) -0.2 (0.02) 0.21 (0.06) 

51 5511 100 0 0.41 (0.09) 0.27 (0.29) 0.88 (0.66) 0.76 (0.01) -0.59 (0.24) 0.87 (0.12) -0.76 (0.03) 0.26 (0.12) 

52 2402 95 0.02 0.41 (0.09) 0.32 (0.28) 0.75 (0.93) 0.63 (0.14) -0.56 (0.43) 1.01 (0.21) -0.32 (0.04) 0.32 (0.15) 
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APPENDIX A. Optimizing indicator weights for equal importance in composite indices 
We used a composite index approach (see Greco et al. 2019) to combine several individual 
indicators into a single metric of ecological value. In our case, we used a simple linear 
combination of indicators with weights applied to each indicator. The values of the composite 
index, y	 (a column vector of length I	), are calculated as  

$	 = 	&'.       (eq. A1)  

X is an I	×	J matrix of indicator values, where ,!	# is the value of indicator j for observation i, and 
w is a column vector of weights of length J, where '# is the weight for indicator j. The 
observations, i, in our case correspond to the values of individual pixels in spatially-gridded 
indicator data.  

It is tempting to assume, in the case of the linear combination in equation A1, that the weights 
represent the relative importance of each indicator in determining the overall composite index, 
but this is not always the case (Paruolo et al. 2013, Becker et al. 2017). When indicators are 
correlated, weights are often not truly representative of importance. Paruolo et al. (2013) and 
Becker et al. (2017) offer a simple metric of “importance”, Sj	, for indicator	j, that 
accommodates correlation among indicators.  

      (eq. A2) 

Sj , also called the Pearson correlation ratio, is a measure of the degree to which a single 
indicator can explain observed variation in the composite index, y. 1($3!|,!	#)is the expected 
value of the composite index given the value of indicator j	for observation i,	$7	is the mean 
observed composite index value across all observations, and yi is the observed composite index 
value for the	i th observation. 1($3!|,!	#) can be defined using any regression of indicator j on y, 
including nonlinear and non-parametric regression. This feature is important because – in the 
case of correlated indicators – the relationship between indicator j and the composite index y 
can be nonlinear. Becker et al. (2017) suggest that Gaussian process or penalized splines 
regression offer the most generalizable solution for defining 1($3!|,!	#) because it can 
accommodate highly complex nonlinear correlations among indicators. For our purposes, we 
found that polynomial regression with degree 4 could sufficiently capture nonlinear 
relationships between indicators and composite index scores resulting from correlations among 
indicators. We opted to use this simpler regression function because it is less subject to 
parameterization decisions than penalized splines (e.g. number of knots, degree, and order) 
and offers vast improvements in computation speed compared to Gaussian process regression.  

With Eq. 2, we now have a way to measure the importance of each indicator. The challenge 
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then becomes how to reverse engineer the weights from a set of desired importances. 
Following Becker et al. (2017), we use an optimization algorithm to determine the set of 
weights that yields, based on equation A2, the desired set of importances (i.e., those chosen by 
the user, in this case, equal importance across all indicators). Specifically, we used the Nelder 
Mead function (with bounds [0, 1] for individual weights) in the lme4 package in R (Bates et al. 
2015), and optimized weights to determine the set of weights that minimizes the difference 
between our desired importances (i.e., equal importance) and observed importances (the 
values of Sj). There is not always a perfect solution to the “inverse problem” (Paruolo et al. 
2013), but the optimizer will nonetheless find the “best” solution. For this reason, it is 
important to verify using equation A2 that the optimal weights do indeed result in importances 
that are acceptably close to the desired importances.  

 
As noted in the main text above, for the analysis described here, we used equal importance as 
the basis for all indicators in our composite index, as there was no a priori justification for 
applying different importance values to different indicators. In other applications, the process 
of determining weights is often expert-driven. It may be necessary in such cases to solicit expert 
opinion on what the desired importances should be, rather than weights, as it is much more 
intuitive.  
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Table B1. Summary statistics for all high ecological value areas (HEVAs). HEVA IDs correspond to the numeric labels in the reference map (Fig. 2). Values for ecological 
and environmental indicators and the composite index are given as means (standard deviations) for all pixels within the HEVA. Indicator means are shown in their 
original units (i.e., not z-transformed), as described in Section 3 above. 

ID Area 
% NFS 

lands 

Road 

impact 

Climate 

resilience 
Connectivity 

Imperiled 

richness 
Intactness Total carbon 

Vegetation 

diversity 

Vertebrate 

richness 

Composite 

Index 

1 4518 100 0.02 -1.13 (0.49) 8267.62 (1951.73) 0.65 (0.48) 0.94 (0.12) 115.39 (30.75) 0.33 (0.01) 90.59 (1.34) 0.29 (0.15) 

2 7699 100 0.02 -1.61 (0.63) 7713.41 (559.25) 0.26 (0.44) 0.97 (0.02) 130.75 (30.68) 0.33 (0.01) 90.27 (1.49) 0.33 (0.14) 

3 1640 100 0 -0.91 (0.29) 6530.81 (651.74) 0.66 (0.47) 0.87 (0.08) 166.64 (26.2) 0.28 (0.01) 90.05 (1.09) 0.26 (0.14) 

4 25796 98 0.01 -0.65 (0.35) 7811.72 (1041.36) 0.62 (0.52) 0.94 (0.06) 134.16 (23.03) 0.31 (0.01) 91.2 (0.89) 0.29 (0.1) 

5 5311 96 0.03 -1.81 (0.54) 8229.42 (1077.98) 0.75 (0.77) 0.86 (0.11) 125.33 (15.84) 0.33 (0.01) 94.98 (0.15) 0.28 (0.11) 

6 217 100 0 -2.05 (0.1) 9788.04 (792.35) 0 (0) 0.97 (0.01) 105.02 (8.38) 0.32 (0) 95 (0) 0.19 (0.04) 

7 25865 100 0.01 -1.54 (0.6) 9254.56 (2519.44) 0.96 (0.74) 0.91 (0.12) 109 (23.11) 0.33 (0.01) 98.98 (1.36) 0.32 (0.13) 

8 661 100 0 -2.15 (0.23) 12102.65 (1082.49) 0.85 (0.43) 0.97 (0.01) 108.34 (9.75) 0.29 (0) 97 (0) 0.19 (0.06) 

9 1866 87 0.05 -0.43 (0.19) 5745.22 (658.31) 1.2 (0.83) 0.96 (0.03) 96.82 (18.2) 0.38 (0) 74.31 (0.46) 0.3 (0.09) 

10 112 100 0 -2.91 (0.02) 5879.6 (386.11) 0.21 (0.41) 0.99 (0) 146.91 (17.3) 0.35 (0) 77.14 (0.35) 0.31 (0.06) 

11 13391 97 0.03 -0.38 (0.08) 5430.58 (449.02) 2.55 (1.28) 0.99 (0.01) 76.76 (19.53) 0.36 (0.01) 73.04 (0.75) 0.27 (0.11) 

12 146 96 0 -0.37 (0.02) 4871.07 (284.8) 1.49 (0.86) 0.99 (0) 59.4 (2.73) 0.38 (0) 76 (0) 0.21 (0.07) 

13 154 100 0 -0.33 (0.02) 4869.23 (107.13) 1 (0) 0.98 (0) 72.87 (4.77) 0.38 (0) 73 (0) 0.22 (0.02) 

14 3879 91 0.02 -0.5 (0.59) 5554.57 (569.64) 0.94 (0.77) 0.98 (0.01) 104.16 (25.61) 0.37 (0.01) 74.63 (0.92) 0.31 (0.11) 

15 358 100 0 -0.37 (0.02) 4943.79 (171.26) 0 (0) 0.99 (0) 107.05 (20) 0.37 (0) 72.22 (0.59) 0.21 (0.07) 

16 1994 100 0.01 -3.81 (0.38) 7209.71 (596.66) 1.43 (0.49) 0.97 (0.02) 159.91 (18.34) 0.3 (0.01) 77.04 (0.58) 0.26 (0.08) 

17 4104 100 0.03 -1.14 (0.46) 8094.69 (1632.49) 0.54 (0.56) 0.93 (0.07) 94.17 (23.39) 0.33 (0.01) 99.73 (0.45) 0.28 (0.12) 

18 4636 84 0.02 -2.86 (0.3) 6275.53 (1046.24) 1 (0.57) 0.95 (0.05) 127.22 (23.15) 0.35 (0.01) 79.41 (1.07) 0.27 (0.11) 

19 7644 98 0.03 -0.5 (0.04) 5356.08 (499.48) 0.91 (0.44) 0.98 (0.02) 109.9 (19.13) 0.36 (0.01) 74.57 (0.56) 0.28 (0.08) 

20 678 33 0.02 -0.44 (0.03) 6112.02 (403.9) 0.39 (0.55) 0.95 (0.03) 118.01 (20.09) 0.37 (0) 73.73 (0.45) 0.27 (0.09) 

21 2050 94 0.02 -0.38 (0.03) 7081.3 (839.59) 0.5 (0.52) 0.99 (0.01) 125.4 (17.5) 0.35 (0.01) 73.6 (0.49) 0.27 (0.08) 

22 488 100 0.02 -0.58 (0.04) 5006.07 (163.51) 0.31 (0.93) 0.97 (0.02) 97.46 (26.58) 0.37 (0) 74 (0) 0.22 (0.14) 

23 7128 100 0 -1.94 (1.08) 5723.37 (709.85) 0.48 (1.07) 0.97 (0.05) 109.38 (23.43) 0.36 (0.01) 85.57 (2.95) 0.3 (0.1) 

24 5068 75 0.02 -0.31 (0.09) 6552.08 (705.36) 1 (0.53) 0.97 (0.03) 120.55 (17.6) 0.35 (0.01) 74.6 (0.93) 0.3 (0.08) 

25 272 54 0.03 -0.71 (0.04) 5081.19 (491.52) 1.48 (1.32) 0.9 (0.04) 95.41 (22.45) 0.36 (0.01) 74 (0) 0.21 (0.19) 
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26 22748 92 0.02 -0.82 (0.15) 5534.16 (644.19) 1.57 (1.05) 0.98 (0.03) 91.08 (21.05) 0.37 (0.01) 74.59 (0.49) 0.3 (0.11) 

27 1471 99 0 -0.58 (0.04) 4728.39 (290.75) 3.61 (1.12) 0.99 (0) 70.16 (10.12) 0.36 (0) 73.07 (0.68) 0.33 (0.1) 

28 418 96 0.05 -1.21 (0.06) 4681.68 (119.78) 2 (0) 0.98 (0.01) 91.45 (14.95) 0.37 (0) 73.23 (0.42) 0.32 (0.06) 

29 916 81 0.03 -1.28 (0.02) 4820.99 (133.22) 1.83 (0.59) 0.93 (0.04) 81.66 (20.72) 0.37 (0) 74.01 (0.11) 0.24 (0.1) 

30 370 82 0 -0.82 (0.03) 4648.5 (155.43) 2.52 (1.18) 0.98 (0.01) 64.41 (5.93) 0.37 (0) 76.76 (0.44) 0.26 (0.11) 

31 13509 100 0.01 -0.35 (0.05) 6155.51 (901.73) 0.32 (0.47) 0.98 (0.02) 106.92 (22.88) 0.37 (0.01) 78.95 (1.05) 0.3 (0.1) 

32 3015 100 0.01 -0.51 (0.03) 4691.55 (272.67) 0.94 (0.86) 0.98 (0.01) 107.36 (25.2) 0.36 (0) 74.33 (0.47) 0.28 (0.12) 

33 346 50 0 -0.35 (0.01) 8691.13 (882.31) 0.93 (0.25) 0.98 (0) 109.55 (25.46) 0.33 (0.01) 83.99 (1.21) 0.27 (0.11) 

34 1367 92 0.03 -1.11 (0.1) 5801.91 (413.25) 3.07 (0.65) 0.99 (0.01) 66.64 (20.15) 0.36 (0.01) 75.04 (0.19) 0.28 (0.11) 

35 13848 92 0.03 -1.18 (0.1) 5747.92 (444.06) 1.14 (0.62) 0.98 (0.02) 93.31 (19.98) 0.37 (0.01) 81.02 (1.22) 0.31 (0.09) 

36 254 100 0 -0.47 (0.03) 5708.35 (155.62) 1 (0) 0.97 (0.01) 91.72 (19.72) 0.38 (0) 72 (0) 0.26 (0.08) 

37 2877 94 0.04 -1.43 (0.23) 5828.61 (578.22) 0.19 (0.4) 0.98 (0.02) 116.91 (14.22) 0.36 (0.01) 77.69 (0.63) 0.27 (0.07) 

38 433 100 0 -0.52 (0.02) 5201.9 (212.65) 1 (0) 0.97 (0.01) 79.8 (18.66) 0.39 (0) 72.92 (0.39) 0.24 (0.07) 

39 7289 89 0.01 -1.15 (0.2) 7688.69 (753.97) 0.73 (0.83) 0.98 (0.02) 122.94 (19.29) 0.36 (0.01) 77.48 (1.77) 0.32 (0.1) 

40 2867 99 0.01 -0.86 (0.1) 5456.37 (410.95) 1.36 (1.49) 0.98 (0.01) 101.61 (27.61) 0.35 (0.01) 75 (0.54) 0.25 (0.11) 

41 11499 89 0.02 -1.11 (0.33) 5608.27 (510.26) 1.16 (1.26) 0.96 (0.05) 102.06 (23.43) 0.36 (0.02) 76.89 (0.77) 0.28 (0.11) 

42 7032 61 0.01 -0.81 (0.14) 5436.66 (675.49) 0.57 (0.69) 0.97 (0.03) 110.23 (25.49) 0.36 (0.02) 83.71 (0.87) 0.33 (0.13) 

43 1332 66 0.02 -1.37 (0.25) 5524.82 (389.52) 0.4 (0.49) 0.98 (0.01) 122.57 (20.38) 0.37 (0) 77.27 (0.47) 0.34 (0.08) 

44 4519 80 0.03 -1.05 (0.49) 5511.18 (364.52) 4.01 (1.5) 0.98 (0.02) 82.73 (15.93) 0.34 (0.01) 76.83 (0.85) 0.34 (0.11) 

45 288 93 0 -0.57 (0.01) 5813.2 (278.91) 3.74 (0.93) 0.97 (0.01) 77.15 (4.09) 0.34 (0.01) 76.53 (0.5) 0.31 (0.08) 

46 6790 61 0.01 -0.95 (0.26) 6373.54 (589.03) 0.31 (0.46) 0.98 (0.03) 126.15 (23.03) 0.33 (0.01) 86.75 (0.91) 0.28 (0.11) 

47 2787 99 0 -0.64 (0.05) 4995.15 (384.58) 1.39 (0.96) 0.99 (0) 105.57 (24.82) 0.35 (0) 74.48 (0.51) 0.28 (0.1) 

48 100 59 0.06 -0.83 (0.22) 5901.2 (387.95) 3.97 (0.66) 0.9 (0.03) 74.98 (19.44) 0.35 (0) 77.22 (0.39) 0.32 (0.08) 

49 2303 72 0.04 -0.87 (0.04) 6777.08 (585.61) 0.79 (0.74) 0.95 (0.04) 133.41 (19.12) 0.33 (0.01) 83 (0.07) 0.32 (0.11) 

50 132 100 0.07 -0.9 (0) 6356.06 (116.11) 0 (0) 0.98 (0) 109.97 (15.88) 0.34 (0) 83.89 (0.31) 0.21 (0.06) 

51 5511 100 0 -1.1 (0.43) 5705.37 (563.95) 3.59 (1.47) 0.99 (0) 84.7 (13.05) 0.32 (0.01) 74.52 (0.5) 0.26 (0.12) 

52 2402 95 0.02 -1.06 (0.41) 5801.5 (548.19) 3.3 (2.07) 0.97 (0.03) 86.73 (23.16) 0.33 (0.01) 81.9 (0.62) 0.32 (0.15) 
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APPENDIX C. Additional Maps 
 

         
Figure C1. Map of Grand Mesa, Uncompahgre and Gunnison National Forests showing the unsmoothed composite 
index of ecological value. See the reference map (Fig. 2) for HEVA IDs, corresponding to rows in Table 1. 
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Figure C2. Satellite map of Grand Mesa, Uncompahgre and Gunnison National Forests showing HEVAs (i.e., areas in 
the top 10% of ecological value) as green polygons. See the reference map (Fig. 2) for HEVA IDs, corresponding to 
rows in Table 1. 
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Figure C3. Map of Grand Mesa, Uncompahgre and Gunnison National Forests showing roads and trails. See the 
reference map (Fig. 2) for HEVA IDs, corresponding to rows in Table 1. 


