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A B S T R A C T

Changes in fire frequency, size, and severity are driving ecological transformations in many systems. In arid and
semi-arid regions that are adapted to fire, long-term fire exclusion by managers leads to declines in fire fre-
quency, altered fire size distribution, and increased proportion of high severity fires. In arid and semi-arid
systems where fire was historically rare, factors such as invasion by highly combustible non-native plants elevate
fire frequency and size, elevating mortality of native species. Altered temperature and precipitation regimes may
exacerbate these changes by increasing biomass and flammability. Current transformation in fire dynamics carry
social as well as ecological consequences. Human cultures, livelihoods, values, and management behaviors are
attuned to fire dynamics. Changes can make it costly or impossible to maintain traditional landscape use and
economic activities. We review the ecological and social science literature to examine drivers of altered fire
dynamics in arid and semi-arid systems worldwide and the conditions representing fire dynamics threshold-
s—points at which altered conditions may make it difficult or impossible to achieve management objectives,
even via traditional adaptive management focusing on alternative management activities to achieve objectives.
Such thresholds could force a wholesale shift in management objectives and practices and a new approach to
adaptive management that redefines objectives when no viable adaptive action can be undertaken.

1. Introduction

Fire frequency (i.e., fire return interval at any given point), size (i.e.,
extent of a burned area), and severity (i.e., degree to which a site has
been altered by fire, a result of heat at the fireline combined with fire
residence time at the site; NWCG, 2018) are actively changing in many
systems (Dale et al., 2001; Keeley, 2009). Human management of any
given landscape is influenced by the historical fire dynamics typical of
that system (e.g., Cissel et al., 1999). Changes in fire dynamics can
therefore force management changes, impacting land use activities as
well as the achievement of management objectives (Baker, 1994;
Brockway et al., 2002; Conedera et al., 2009; Noss et al., 2006a). For
this article, we define fire dynamics as the combination of fire size,
frequency, and severity typifying a particular system at a particular
point in time.

The state of the art response to environmental change in managed
systems is adaptive management (Briske et al., 2010), whereby man-
agers implement sequential interventions accompanied by data

collection to inform adaptive shifts in those interventions. Adaptive
management permits flexibility and resilience, experimentation in
management, and continuous learning in the face of rapidly changing
conditions (Gunderson, 1999). However, adaptive management as
normally practiced assumes consistent objectives guiding human ac-
tivities at a particular location; those objectives are met via a shifting
toolkit of actions. When fire dynamics depart sufficiently from the
natural range of variation, systems may reach thresholds beyond which
established land management objectives become unachievable even
through traditional adaptive management. Such thresholds vary among
systems and among objectives (Bowman et al., 2011; Groffman et al.,
2006; Pausas and Fernández-Muñoz, 2011). In this manuscript, we
discuss the combined social and ecological (socioecological) circum-
stances that may lead to such thresholds that necessitate a shift in how
managers select, identify, and define management objectives them-
selves. This may compel a new form of adaptive management that fo-
cuses on shifts in objectives as well as activities. Although fire dynamics
in many parts of the world have been influenced by human activities for
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thousands of years, for our purposes we focus on modern shifts in fire
dynamics that are actively occurring in present-day managed environ-
ments, reviewing how fire size, frequency, and severity are currently
and actively changing as a result of anthropogenic influences on arid
and semi-arid ecosystems.

We focus on arid and semi-arid systems for tractability. Fire dy-
namics in these systems are affected by non-native species invasion,
human-caused ignitions, climate-induced drought, and decades of an-
thropogenic fire suppression (Garfin, 2013). Arid and semi-arid systems
include forested, woodland, shrubland, grassland, and desert zones and
occur in patchy distribution in western North America, western South
America, South Africa and northern Africa, interior Asia, and western
and interior Australia (Scanlon et al., 2006).

2. Background: present-day changes in fire dynamics in arid
systems

Fire dynamics are changing in arid and semi-arid systems across the
globe as a result of anthropogenic drivers such as fire suppression and
exclusion, livestock grazing, non-native plant invasions, intentional
ignitions, and climate change (Bowman et al., 2011; Swetnam et al.,
2016). Changes can include both increases and decreases in fire fre-
quency and size, depending on whether a system is historically fire-
adapted or non-fire-adapted. In fire-adapted systems, fire plays a fun-
damental role in the formation of vegetation patterns (Bowman et al.,
2009), which can be affected by decreases in fire frequency and size. In
a Swaziland savanna, for example, livestock grazing combined with fire
suppression increased shrub cover from 2 to 31% between 1947 and
1990 (Roques et al., 2001). Suppression of fires in South African
grasslands has led to similar growth in cover of woody species (Uys
et al., 2004). The same pattern can be seen in native grasslands in the

southwestern US, with encroachment of creosote (Larrea tridentata) and
mesquite (Prosopis glandulosa) (Grover and Musick, 1990) (Fig. 1). In-
creased cover of western juniper (Juniperus occidentalis) in a south-
central Oregon sagebrush steppe over the past century was driven by
fire suppression and livestock grazing in combination with climate
change (Miller et al., 2008). Woody encroachment resulting from fire
suppression has occurred in Australia (Noble, 1998) and Venezuela
(Silva et al., 2001), as well. Thus, in many parts of the world, vegetation
patterns have been dramatically transformed as a result of fire sup-
pression and exclusion in historically frequent-fire systems. By in-
troducing woody vegetation, these changes transform rangelands and
agricultural areas in working landscapes, as well, with consequences for
regional economies (e.g., Moleele et al., 2002).

In the American West, long-term exclusion of fire by managers in
woodland and forest ecosystems began in the late 1800s, leading to
accumulation of fuels and increased fuel continuity in many historically
frequent-fire regions (Littell et al., 2009; Romme and Despain, 1989;
Stephens and Ruth, 2005). After a series of destructive fires, culmi-
nating in the Big Blowup of 1910, the US Forest Service was charged
with wildland fire suppression to protect the nation's timber (as an
economic resource) as well as human lives and property (Busenberg,
2004; Pyne, 2011). Suppression was highly effective; in a particularly
dramatic example, fire frequency in ponderosa pine (Pinus ponderosa)
forests in a southwestern study site decreased from one fire every 3.7
years before 1883 to only one fire event during the 112 years between
1883 and 1994, a 30-fold decrease in frequency (Fulé et al., 1997).
Similar changes have occurred in other sites around the Southwest
(Noss et al., 2006b). These rapid changes in fuel loads, structure and
composition in many fire-adapted arid and semi-arid systems across the
US paved the way for escalating fire intensity and fire severity (Pyne
et al., 1996).

Fig. 1. Example of a socioecological threshold emerging from changing fire dynamics and leading to altered management objectives: ongoing shrub encroachment
stemming from decades of combined fire suppression and grazing reduces the livestock carrying capacity of rangelands (Tobler et al., 2003; Anadón et al., 2014).
Since this diminishes ranching profitability, it contributes to a widespread decadal trend of ranch sell-off for development in arid and semi-arid habitats (Sheridan,
2001). Photo by Emily Yurcich.
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In non-fire-adapted systems such as many deserts, fire frequency
and size are historically low (Allen et al., 2011): if native vegetation is
not dense enough to carry fire, native species may lack fire adaptations
(Alford et al., 2001). Increased fuel loading and continuity in such non-
fire-adapted communities may increase fire frequency and size and
negatively impact native species (Brooks and Chambers, 2011). An-
thropogenic nitrogen deposition has boosted annual grass productivity
in southern California deserts, for example, increasing fire risk (Rao
et al., 2010). Exotic grass species in many arid and semi-arid regions
represent a novel fuel source, because they can occur in relatively high
densities and often grow and cure quickly; this has happened, for ex-
ample, in many parts of the American West (Balch et al., 2013; Brooks
et al., 2004; D'Antonio and Vitousek, 1992). (See Table 1).

One of the major contributors to this pattern in the western US is
introduced cheatgrass (Bromus tectorum), which is characterized by
continuous coverage of annual biomass, rapid green-up followed by
early-season senescence, and high litter accumulation (Whisenant,
1990; Germino et al., 2016). Fire return interval at Great Basin sites
dominated by B. tectorum has been estimated at 49–78 years, in contrast
with an average fire return interval for native-dominated sites (in-
cluding sagebrush, pinyon-juniper, desert shrub, montane shrub, and
agriculture) of 294 years (Balch et al., 2013). Additionally, B. tectorum
fires are larger in extent than other fires in the region (Balch et al.,
2013). In the Sonoran Desert, the introduction of African buffelgrass
(Pennisetum ciliare) has exerted a similar effect, providing a continuous
and fast-growing source of fine fuels (Van Devender et al., 1997). Na-
tive Sonoran Desert plants recover poorly after fire, creating a feedback
cycle wherein post-fire systems are even more heavily dominated by P.
ciliare (McDonald and McPherson, 2011). The link between invasive
species and fires exemplifies a threshold-driven system, in which
managers strive to maintain or increase ecological resistance to plant
invasions before it becomes difficult or impossible to return the system
to its prior state (Brooks and Chambers, 2011; Chambers et al., 2014,
2016).

Historical fire dynamics emerged in part from historical climate
conditions driving vegetation patterns; many arid and semi-arid regions
are therefore likely to exhibit changed fire dynamics under ongoing
global climate change (Lenihan et al., 2007; Williams et al., 2001;
Moritz et al., 2012). Climate influences fire potential by affecting both
the flammability of vegetation and the production of biomass
(Abatzoglou and Williams, 2016; Dale et al., 2001; Jolly et al., 2015;
Whitlock et al., 2003). In the American Southwest, precipitation ex-
tremes in winter are projected to become more frequent and more in-
tense under climate change, and summer heat waves are projected to
become longer and hotter (Garfin, 2013). This may result in increased

occurrence of extreme wet periods, during which biomass accumulates
at higher rates than normal, followed by extreme hot and dry condi-
tions, during which biomass becomes exceptionally flammable. Such
patterns have been recently observed, for example, for non-native an-
nual plant-invaded deserts (Gray et al., 2014; Hegeman et al., 2014) in
southwestern North America and fine fuels-dominated grasslands and
shrublands in the Great Basin (Balch et al., 2013).

2.1. Ecological consequences of present-day shifts in arid and semi-arid
system fire dynamics

Where fire frequency and size are increased in non-fire-adapted
systems, plant communities are altered as a result of repeated burning
cycles (Brooks et al., 2004; D'Antonio and Vitousek, 1992). Increased
non-native Tamarix occurrence in xeroriparian areas in Mexico and the
US lead to increased frequency of fire in riparian areas, for example,
and Tamarix resprouts more quickly after fire than native species
(Mandle et al., 2011). Exotic roadside grasses in western Australia in-
crease fire probability and then increase in density after burning
(Milberg and Lamont, 1995). Via these feedback cycles, the introduc-
tion of fire-adapted species can lead to novel species assemblages in
arid and semi-arid regions. Where fire frequency and size have de-
creased in fire-adapted systems, fire intensity is often heightened due to
fuel accumulation (North et al., 2015), lengthening recovery times
(Savage and Mast, 2005). High severity fire over large patches may be
followed by erosion events, weed invasions, or vegetation type trans-
formations (Pierson et al., 2011). Thus, modern changes in fire dy-
namics can dictate a suite of ecological patterns, influencing hydro-
logical regimes, soil characteristics and runoff, and habitat condition
(Bond and Keeley, 2005; Syphard et al., 2007). Crucially, these changes
represent important management challenges and may impact present-
day management objectives (Millar et al., 2007; Russell-Smith et al.,
2003; Whisenant, 1990).

2.2. Social consequences of present-day shifts in arid and semi-arid system
fire dynamics

Severe fires can affect livelihood activities that are environment-
dependent, such as ranching, agriculture, timber harvest, fishing, and
recreation (Bowman et al., 2011; MacLean, 1990; Mason et al., 2006).
In Ghana, crops and livestock are lost each year to bush fires, which can
lead to local desertification and food insecurity (Iddrisu, 1995). In-
creasingly severe fires in Botswana put humans, livestock, and wildlife
at risk and eliminate both habitat and forage (Dube, 2013). Native
American communities in the southwestern US have experienced losses

Table 1
Arid and semi-arid systems in which fire dynamics are changing, the drivers of such changes, and potential management responses.

Habitat type Changes in fire dynamics Ecological and social consequences Adaptive management tools to meet objectives

Savanna and
grassland

Woody encroachment due to livestock grazing and
fire suppression leads to increasingly severe fires;
global climate change and exotic grasses increase
the frequency and extent of higher-intensity fires
(Grover and Musick, 1990; Milberg and Lamont,
1995; Miller and Rose, 1999; Rocques et al., 2001;
Uys et al., 2004; Miller et al., 2008; Steffen et al.,
2015)

Elimination of wildlife habitat and forage, crops,
and livestock; losses of life, homes, properties,
and food; declines in housing prices; reduced
regional biodiversity (Iddrisu, 1995; Provencher
et al., 2007; Mueller et al., 2009; Andersen et al.,
2012; Dube, 2013; Redsteer et al., 2013; Steffen
et al., 2015)

Combined prescribed fire and grazing for
conservation objectives; prescribed fires to
maximize carbon sequestration and grazing yield
and maintain grassland health (Bashari et al.,
2008; Augustine and Derner, 2014; Scheiter et al.,
2015)

Forest, shrubland,
and woodland

Accumulation of fuels and changes in fuel
structure and composition due to fire exclusion
and suppression leads to increasingly severe and
large fires (Romme and Despain, 1989; Fule et al.,
1997; Stephens and Ruth, 2005; Noss et al.,
2006b; Littell et al., 2009)

Loss of biodiversity; decreases in recreation;
more costly fire management priorities; losses of
life, homes, properties; decline in housing prices
(Starbuck et al., 2006; Miller et al., 2017; Mueller
et al., 2009; Calkin et al., 2013)

Timber harvest pre-fire to make post-fire
restoration more cost-effective; landowners pay
for fuels management activities; use of artificial
habitat for threatened species conservation (Kaval
et al., 2007; Taylor et al., 2015; Miller et al.,
2017)

Desert Exotic grasses lead to increasing fire frequency,
size, intensity (Van Devender et al., 1997; Rao
et al., 2010; McDonald and McPherson, 2011;
Balch et al., 2013)

Loss of native species and habitat (Brooks et al.,
2004)

Incorporation of objective-change thresholds into
scenario planning (current ongoing Sonoran
Desert work by these authors)
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of life, homes, properties, and traditional food plants as a result of se-
vere fires in recent decades (Redsteer et al., 2013). Escalating fire in-
tensity and frequency in Australia carry significant economic threat,
through livestock losses, for the agricultural industry in western Aus-
tralia (Steffen et al., 2015). Such impacts can transform the economy
and social fabric of a region, resulting in rural-urban migration, re-
sidential development, and loss of cultural practices (Trainor et al.,
2009).

3. Impacts of changing fire dynamics on land management in arid
and semi-arid landscapes

The impacts of changing fire dynamics on socioecological systems
suggests a need for assessment of changes in socioecological resistance
and resilience to guide management efforts (e.g., Briske et al., 2010;
Chambers et al., 2017; Wisdom and Chambers, 2009). Managers and
management regimes can resist change or be unable to alter objectives,
resulting in static land use objectives in the face of variable or shifting
conditions; the factors influencing when and how land managers are
able to adapt are still being explored (Groffman et al., 2006).

Adaptive management as commonly practiced may allow managers
to sequentially alter their methods in response to changes in fire dy-
namics as they attempt to meet their management objectives (Folke
et al., 2004). However, this activity-focused adaptive management may
no longer suffice when dynamics have changed enough that current
management objectives cannot be reached through any management
actions. In such circumstances, a shift in management objectives
themselves may be necessary. Below, we discuss how shifting fire dy-
namics currently affect selected static management objectives common
to many arid and semi-arid socioecological systems—livestock grazing,
timber harvest, recreation, and protection of lives and property. These
management objectives, which are not themselves explicitly centered
on fire but are directly impacted by it, exemplify the complex ways in
which economic and social values are intertwined with fire manage-
ment.

3.1. Fire and grazing management

The combined effects of grazing and changing fire dynamics have
the potential to drive changes in species abundance and composition
(e.g., Bashari et al., 2008; Creutzburg et al., 2015; Scheiter et al., 2015).
In northern Australian savannas, carbon sequestration is maximized
with early dry season fires and long fire return intervals, while eco-
nomic productivity of rangelands is maximized with late dry season
fires and intermediate fire return intervals (Scheiter et al., 2015). In
eastern Nevada, livestock remove fine fuels but also lead to grassland
degradation, thus working against fire and vegetation management
goals (Provencher et al., 2007). In the rangelands of central Argentina,
a combination of prescribed burns and intensive cattle grazing may
cause soil loss and rangeland degradation, making commercial livestock
production unsustainable (Cingolani et al., 2013). In each of these ex-
amples, then, fire dynamics affect managers' long-term objective of
grazing management.

In some cases, fire and grazing management can be combined to
achieve management objectives. Frequent fire mitigated negative im-
pacts of selective grazing on species composition and thus promoted
grassland health in ironbark-spotted gum woodland systems in
Queensland, Australia (Bashari et al., 2008). Cattle selectively grazed
burnt areas in semi-arid rangelands in Colorado, indicating that grazing
rotation and fire management can be combined to meet conservation
and production goals (Augustine and Derner, 2014). In these examples,
therefore, grazing objectives can be bolstered by fire occurrence, de-
pending on relative timing.

3.2. Timber harvest

Deriving economic gain from timber harvest is common manage-
ment objective in some arid and semi-arid forests, and fire dynamics
affect such economic gain. In southwestern US ponderosa pine forests,
present-day fuel management activities designed to prevent an ecolo-
gical regime shift carry high costs ($500-$2000 per ha), but those costs
are more than offset by avoidance of the costs of catastrophic fire and
resulting transitions from pine forest to grassland/shrubland, estimated
at more than $10,000 per ha (Wu et al., 2011; Wu and Kim, 2013). As a
result of these benefits, Thomas et al. (2016) report that every $1
million US dollars invested in ecosystem restoration resulted in
$2.2–3.4 million in total economic gain. Incorporating the value of
harvested timber can also make post-fire restoration more cost-effec-
tive, depending on timber prices (Taylor et al., 2015).

3.3. Recreation and tourism

Many fire-prone landscapes have economies that depend on outdoor
amenity, recreation, and tourism objectives. Perceptions of fire in re-
creational areas vary by stakeholder group, location, and over time. In a
study examining several Western US forest regions, hikers reacted po-
sitively to landscapes in the first few years following a fire, due to the
novelty of the burnt landscape as well as increased opportunity for
wildflower and wildlife viewing (Loomis et al., 2001). By contrast, in
New Mexico, surveyed hikers and bikers had less positive views of a
landscape up to 40 years after a fire, with visits declining as the local
prevalence of burned area increased (Hesseln et al., 2003). The results
of stakeholder surveys based on simulations of fire scenarios in New
Mexico suggested that large, severe burns will lead to an estimated 7%
decrease in visits to National Forests in the state, with losses of US$81
million in output, US$36.5 million in earnings, and 1941 jobs (Starbuck
et al., 2006). Low-intensity burns, by contrast, were predicted to boost
visits, as thinned forests are attractive to trail users, though economic
benefits will be short-lived as sites recover (Starbuck et al., 2006).
Achieving recreational management objectives can therefore be im-
pacted in various ways by fire.

3.4. Homes, property, and lives

Naturally, federal wildfire policy establishes firefighter and public
safety as the highest priority wildfire management objective (Venn and
Calkin, 2011). Fire managers in the western US tend to favor fire
management strategies that reduce risk to homes or high-value water-
sheds even when those strategies are more expensive than alternatives
(Calkin et al., 2013). In many fire-adapted ecosystems, conservation or
ecosystem goals are subordinate to the need to prioritize protection of
people and property (van Wilgen et al., 2011). This creates a perceived
conflict between public safety and the desire to restore historical fire
regimes, even though such restoration is necessary to reduce severe fire
risk in the long term (Noss et al., 2006a; Schoennagel et al., 2009). Such
conflicts require re-evaluation of approaches to both fire management
and urban planning and development (Moritz and Stephens, 2008), for
example via planning for fire that is spatially-explicit and includes
variable management approaches over a heterogeneous landscape
(Thompson et al., 2016). Current and projected increases in fire fre-
quency imply that a growth in both acceptance of fire and adaptability
to fire on the part of human communities is essential (Schoennagel
et al., 2017).

The objectives of landowners and ecosystem managers are not al-
ways in conflict, as preventative fire management is often in the best
interest of homeowners. In illustration of this, housing prices in fire-
threatened parts of Los Angeles County fell 9.7% after a first wildfire
and 22.7% after a second (Mueller et al., 2009). In Arizona and Col-
orado, landowners have shown willingness to pay for fuels management
activities with benefits to forest ecosystems (Kaval et al., 2007; Kim and
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Wells, 2005; Miller et al., 2017).

3.5. Tradeoffs between management objectives

Fire management may entail tradeoffs between values. Fire dy-
namics affect economic resources such as timber and livestock, property
and infrastructure, and recreation and tourism, in addition to non-
market forest goods and services including air quality (e.g., smoke oc-
currence and quantity), soil productivity, water quality and quantity,
habitat, and cultural heritage (Thompson and Calkin, 2011; Venn and
Calkin, 2011). As fire patterns change, it becomes increasingly im-
portant to understand and balance those values in order to recognize
those thresholds at which management no longer meets desired ob-
jectives (Costanza and Moody, 2011). When government management
priorities reflect the values of local and regional stakeholders, the
public is more supportive of fire management activities (Vaske et al.,
2007). However, policy-makers and managers often have limited in-
formation about the values placed by stakeholders on goods and ser-
vices, and this stymies efforts to develop mutually-acceptable strategies
(Venn and Calkin, 2011). Nevertheless, understanding how values im-
pact fire management is crucial to predicting likely management re-
sponses to future fire.

4. Changing fire dynamics create challenging socioecological
management thresholds

In cases of extreme change, landscapes may reach a threshold be-
yond which it may become impossible to achieve land management
objectives even with a traditional adaptive management approach of
sequentially employing various activities. This socioecological scenario
represents a critical threshold beyond which the management objectives for
a particular site are forced to change. An example of such a change in
objectives might be a fire-induced shift from timber harvesting to re-
creation or ranching. That is, managers may need to explore alternative
objectives, each with their own set of potential actions. This represents
a more extreme form of adaptive management focused on objectives, that
may require collaboration among broadly diverse segments of society.

In classic ecological resilience literature, the characteristics of an
ecological system are collectively known as a state (Holling, 1973).
Disturbance has the potential to force a state change. The resilience of
the system measures the amount of disturbance a system is able to
absorb without changing states or how easily the system returns to its
previous state following a disturbance (Holling, 1973). Ecological state
change can be proximally driven by changes in the extent, severity, or
frequency of fire, such as when grasslands are converted to shrublands,
or desert scrub to annual invasive grasslands (McDonald and
McPherson, 2011; Miller and Rose, 1999). Adaptive management that
responds to such shifts in fire dynamics can in some cases permit a
socioecological system to return to its previous ecological and social
conditions after disturbance, demonstrating socioecological resilience
(Higgs et al., 2012). Such adaptive management benefits from a me-
chanistic understanding of an ecosystem's responses to fire (Driscoll
et al., 2010; Roe and Van Eeten, 2001). Successful adaptive manage-
ment also explicitly acknowledges uncertainty and human behavior and
employs monitoring, evaluation, and revision (Groffman et al., 2006;
van Wilgen et al., 2014).

When fire dynamics change enough that no amount of strategizing
and flexibility may permit current objectives to be achieved, a socio-
ecological threshold has been reached beyond which traditional adap-
tive management may no longer be effective. Instead, a new style of
adaptive management entailing recognition of the threshold and iden-
tification of new objectives may be required (Fig. 2). As an example,
following decades of fire suppression an unusually severe fire in 2011
burned in high-elevation conifer forest of the Chiricahua Mountains in
southeastern Arizona (Falk, 2013). Both groundcover and canopy were
lost in many parts of the Horseshoe 2 Fire, resulting in erosion of

burned hillsides and sedimentation of mountain streams (Youberg
et al., 2012); as a result, aquatic habitat quality was degraded by debris
and coarse sediment that thereafter choked the five canyons and wa-
terways burned by the fire (Youberg et al., 2012). This substantial loss
of habitat represented a threshold beyond which management objec-
tives changed: the decision was made to move an endemic population
of an endangered fish, the Yaqui chub (Gila purpurea), into artificial
habitat until the Chiricahuan streams recovered or could be restored. In
this case, fire resulted in such an extreme ecological state change that
conservation objectives could not be reached in situ; that is, no man-
agement strategies could meet the objective of conserving the Yaqui
chub within its stream. Instead, managers adapted by adopting a new
set of objectives: establishing and safeguarding a captive population of
the chub.

In the context of this discussion, thresholds occur when system
changes due to fire result in a shift in management objectives and thus
activities (Fig. 2). As another example of this phenomenon, severe fires
resulting in “hazard trees” and other dangers to the public can result in
multi-use forests that become closed to recreation, either temporarily or
over long time periods (McCaffrey, 2006). In Australia, decreasing use
of aboriginal fire to clear patchy hunting and foraging areas has re-
sulted in an increase in more severe lightning-strike fires in some re-
gions, decreasing biodiversity and rendering such areas unsuitable for
hunting as an objective (Bliege et al., 2008). Stand-replacing fires in
some cases have been the impetus for salvage timber harvesting, even
in previously protected areas—leading to controversies as road con-
struction and increased soil erosion compound the effects of the fires
themselves (Lindenmayer and Noss, 2006).

Recognizing management objective thresholds could enable man-
agers to prepare for them and permit a deeper understanding of the
socioecological implications of changing fire dynamics. Insights from
land managers can pinpoint thresholds that will require changes in
management objectives; scientists may then be able to develop models
to predict such management thresholds. Various modeling approaches
can be used to incorporate adaptive management into landscape sce-
narios (e.g., Bashari et al., 2008; Driscoll et al., 2016; Spies et al., 2014);
incorporating management thresholds into these models may improve
their utility and lead to better and more informed decisions.

5. Conclusions: the need to prepare for thresholds and promising
approaches

Fire dynamics are changing across arid and semi-arid regions of the
world, with consequences for both ecological and social systems.
Traditional adaptive management that sequentially adopts various ac-
tions may enable socioecological systems to meet current management
objectives if changes in fire dynamics are mild or the socioecological
system is flexible and responsive. When management objective
thresholds have been reached, however, and it is no longer possible for
current management objectives to be achieved, stakeholders may be
forced to adopt new objectives (Fig. 2). A deeper understanding of the
interaction between shifting fire dynamics and static management ob-
jectives may help stakeholders prepare for upcoming changes. Chan-
ging management objectives may require shifting values or priorities, or
may require policy change or carry substantial economic costs (Kwadijk
et al., 2010).

While fire managers are experienced in handling uncertainty
(Thompson and Calkin, 2011), many standard decision-support fra-
meworks do not incorporate concepts of thresholds or allow for shifts in
longer-term objectives. Fire and climate models are becoming increas-
ingly adept and accurate at identifying potential ecological thresholds,
but these approaches are rarely accompanied by social science research
designed to identify values, capabilities and limitations, and likely re-
sponses to change scenarios—that is, to identify socioecological
thresholds. Researchers in the Netherlands, for example, worked with
managers to identify potential tipping points associated with sea level
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rise scenarios, and found that objectives regarding drinking water
would become unachievable in advance of other management thresh-
olds, allowing planners to prioritize appropriately (Kwadijk et al.,
2010). In an ongoing research project, the authors of this review are
working with land managers in the Sonoran Desert to assess fire and
fuel scenarios to both identify potential management thresholds re-
quiring a change in objectives and to explore barriers to changing ob-
jectives (e.g., cost, public opinion, and agency mandates).

Because changing fire dynamics involve ecological thresholds, de-
cision-support frameworks and adaptive management frameworks
should be adapted to specifically consider potential management
thresholds. There are a number of approaches to incorporating these
concepts into decision contexts for land managers. Long-term scenario
planning that accounts for the response of multiple values to wildfire is
a growing component of fire management (Thompson and Calkin,
2011) and could help managers anticipate thresholds requiring a
change in objectives as well as actions (Moore et al., 1999). Increasing
decision support time horizons may also help managers recognize ap-
proaching socioecological thresholds before they have arrived (e.g.,
Podur and Wotton, 2010). In addition to increasing temporal scales,
integrating collaborative responses across multiple jurisdictions provide
both greater management resources and an opportunity to shift man-
agement objectives by adopting landscape-scale approaches such as
ranching cooperatives or regional tourism initiatives (Fleeger, 2008).
Improving tools to understand tradeoffs between a range of market and
non-market landscape values, as well as refining approaches to ensure
participation of multiple stakeholders, are important components of
understanding thresholds and identifying viable alternative objectives
(Pacheco et al., 2015; Thompson and Calkin, 2011; Venn and Calkin,
2011). Scenario planning and collaborations may be facilitated by
landscape-scale conservation design efforts that collate existing data to
assist in prioritization of vulnerable sites for fire management (e.g.,
http://southernrockieslcc.org/southrock/wp-content/uploads/2015/
06/GRB-LCD-description-July-2015.pdf; https://lccnetwork.org/
group/desert-lcc-landscape-conservation-planning-and-design-core-
team).

Arid and semi-arid system managers and stakeholders face a
daunting challenge: to respond to fire dynamics in managed environ-
ments that differ from those within which static management objectives
arose, are subject to high uncertainty, and are driven at least in part by
global change drivers that are beyond their control. It is thus critical
that the scientific and management communities together develop an
enhanced understanding of management thresholds, identification of

diverse and viable management objectives, and effective responses to
novel conditions.
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